Just Keep Swimming: Staying Afloat While Exploring Undergraduate Fish Research

Posted on Updated on

By: Tanya Traeger

The author (Tanya Traeger) processing samples for DNA barcoding at SERC. Image courtesy of Tanya Traeger.

The holidays have arrived, signaling an end to my last full-time semester at GMU!

To provide some background, I am studying to be a veterinarian and wanted to gain experience in research. The biology department at GMU offers a research semester every fall for students such as myself looking to explore their future. This is how I happened upon Kim and the rest of her fish heads!

For those of you who may not know, GMU has been actively working with Fairfax County for 30 years in efforts to improve water quality of Gunston Cove, a tributary to the Potomac River. Dramatic decreases in both nitrogen and phosphorus have led to increased water clarity. This change has caused a transition from a phytoplankton dominated habitat to that of submerged aquatic vegetation (SAV).

Each summer, fish are collected, measured, and sorted by habitat to note any changes in the community structure. This year specifically, Casey Pehrson, one of Kim’s graduate students, was working on diet study of the fish at Gunston Cove. Kim partnered me with her over the summer. We took a total of three days out on the water collecting fish and recording them as has been done over the years. We kept any fish over 50 mm and euthanized them for further analysis of their stomach content.

Back at the lab, stomachs were removed and dissected. Prey items were sorted and classified to the lowest taxonomic level. Each prey item was then frozen in sterile wells for further analysis using DNA barcoding – which I will discuss in further detail.

Image of a snail shell taken with the microscope camera. Image courtesy of Tanya Traeger.

Because the amplification of the DNA and barcoding process is a time-consuming process, data analysis was conducted on the taxonomic data. Using Primer-E, software specifically designed for ecologist, the prey items were analyzed by fish species and habitat type. Two species were used in this part of the analysis: the pumpkinseed fish and the bluegill fish. Submerged aquatic vegetation (SAV), open water, and the littoral zone were the assessed habitat types. The results found that while there was both a significant difference in prey items between the species, there was an even greater difference between habitat.

Additionally, fish community data from 1999 was pulled from the Potomac Environmental Research and Education Center (PEREC). Comparing this data to the community data from 2016, a significant shift was observed in the community structure. Because diet data was not available from the 1999 fish community, the open water habitat was used as a proxy to represent the fish diet for that year while the SAV habitat was used to represent the fish diet for 2016. Given that significant differences were found between habitats, it can be concluded that the fish who use the SAV habitat for prey items will likely continue to thrive, while those fish who prefer the open water may decrease in number. A great example of this can be found with the decrease in the Golden Shiner. Its numbers decreased by more than 50% between 1999 and 2016. This can likely be attributed to the fact that plankton is one of the Golden Shiner’s top prey items. While there is still plankton in the cove, the number has dramatically decreased since the shift to SAV dominance.

As mentioned before, prey items were frozen for further analysis using DNA barcoding. This method involves amplifying DNA from each prey item and, through a series of many steps, producing a genomic sequence for each item. The results for these fish are still pending, but this will provide a more complete picture of the fish diets as many items will be able to be classified to the species level. This is being accomplished through collaboration with the Smithsonian Environmental Research Center (SERC) in Edgewater, MD. I have spent a handful of days out their working with a few of their scientists. It involves a lot of patience and pipetting! I must say that my thumbs are feeling very strong!

All in all, I would have to say that this has been a fun experience for me – especially the days out on the boat! Of course, the field work is the most fun, but I have also been introduced to a side of ecology that I did not know much about. It was also great to get a good understanding for the amount of time and thought that goes into research. It is a field that requires patience and attention to detail. Lots of planning goes into the way that methods are to be carried out prior to jumping into things. Possibly the most important lesson of all that I learned from this experience is that often your research will depend on what data you can collect. For instance, with this project we were originally hoping to compare the fish diet of the native catfish to the non-native, invasive blue catfish. However, after three days on the boat we were unable to collect any native catfish and only collected a small number of blue catfish. Therefore, our research direction had to shift. At least in similar studies, you will always be at the mercy of the organism you are collecting!

I would specifically like to thank Kim for this great opportunity and providing lots of direction as this was my first experience working with fish and I frequently felt a little lost!  Also, a huge thank you to Casey for assisting with the dissections, field work, accompanying me to SERC, and pretty much everything else!


Announcement: Post-doctoral research fellow in fish ecology and ecosystem modeling

Posted on

Post-doctoral research fellow in fish ecology and ecosystem modeling

George Mason University
Fairfax, Virginia, US

The George Mason University Department of Environmental Science and Policy is looking for an enthusiastic and energetic person for a post-doctoral research position in fish ecology and ecosystem modeling. The candidate will collaborate on ongoing projects in Dr. de Mutsert’s fish ecology lab (www.demutsertlab.com).

The primary responsibility is ecosystem modeling to assess effects of hypoxia on fish and fisheries in the Gulf of Mexico. The candidate will help improve an Ecospace model developed in Ecopath with Ecosim software, run model simulations, and help develop decision support tools for managers. Tasks include model development, preparation of results and model output for presentations, reports and publications, and help with organizing workshops. Additional responsibilities include fish and shellfish modeling to support Louisiana’s Coastal Master Plan, and field oriented fish ecology projects in Virginia. The field-focused projects may include laboratory work such as sample preparation for stable isotope analysis and caloric content analysis, and fish identification in the field and the lab. The candidate is expected to attend meetings and conferences, and prepare scientific publications.

A PhD is required in fisheries science, oceanography, aquatic ecology, marine sciences or related fields. Experience working with ArcGIS and EwE software is desired, and knowledge of programming in R, SAS, Fortran, Python, or VB.NET is preferred.

Application Instructions:
For full consideration, applicants must apply for position number F103AZ at http://jobs.gmu.edu/postings/39306 by December 21, 2016; complete and submit the online application, and upload a cover letter, CV, research statement, and contact information of three references. Three letters of recommendation should be emailed directly by your references to the head of the search committee, Kim de Mutsert: kdemutse@gmu.edu.

Additional information:
This is a 1-year contract with the option to extend.

Science Diplomacy at its finest: the creation of the world’s largest MPA in international waters

Posted on Updated on

By:  Adrian Dahood

Adelie penguins coming ashore in the Ross Sea

A VERY BIG thing has just happened. A new, and enormous Marine Protected Area (MPA) was just established. On October 27th 2016 headlines from media outlets across the globe erupted with the unbelievably good news that a sizable MPA had been declared in Antarctica’s Ross Sea. This is only the second Antarctic MPA.

A sampling of world press headlines announcing the Ross Sea MPA.

I do not use the word “unbelievably” lightly. Every October since 2011, there have been headlines about the Ross Sea and MPA efforts there. Until this year, those headlines have largely reflected a lack of diplomatic progress to establish the MPA.

The Ross Sea is the most southern sea in the world. It is not governed by any one nation. Rather, the Ross Sea exists in international waters and is governed collectively by all Nations Party to the Antarctic Treaty and the Conservation of Antarctic Marine Living Resources (CAMLR) Convention. The Commissioners of the CAMLR Convention make decisions by consensus. This is a very powerful way to come to decisions because no action is taken until all Parties agree. Decisions made by consensus tend to be harder to reach, but are long lasting. In order for the Ross Sea Marine Protected Area to be adopted, representatives from 24 nations and the European Union had to support the proposal and give their consent. Collectively these representatives are known as the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR).

CCAMLR Nations have vastly different ideologies related to conservation. Nations like the United States, the United Kingdom, Australia, and the European Union have historically pushed forcefully for conservation efforts. Nations such as Russia, China, Japan, and Korea have advocated strongly to maintain fishing access. ALL of 24 member Nations and the European Union reached an agreement to set aside 1.55 million km² area of the Ross Sea as an MPA. The Ross Sea MPA is approximately twice the size of Texas and is the largest protected area in the world.

The newly adopted Ross Sea MPA. Map drawn by The Pew Charitable Trusts and made available here (PDF).

The path to reach agreement on the Ross Sea MPA has been long and hard fought. The idea for the MPA came from the scientific community, specifically Dr. David Ainley who has been conducting research on Ross Sea marine ecosystems for decades. In 2002 Dr. Ainley submitted to CCAMLR the first paper describing the conservation significance of the Ross Sea. It is one of the last places on earth where ecosystem have not been significantly altered by human activities. In 2009 the First International Marine Conservation Congress (IMCC) was held right here at George Mason University. Dr. Ainley and interested scientists and conservationist organized a workshop on the Ross Sea to push for development of an MPA proposal. That same year the first, and until now, only Antarctic MPA was designated near the South Orkney Islands. The first Ross Sea MPA Scenario (a type of preliminary proposal) was submitted two years later by the United States Delegation the 2011 CCAMLR Scientific Committee meeting. The United States, and eventual co-proponent New Zealand, have been submitting a revised, or clarified, proposal to CCAMLR every year since. Nations that conduct the most fishing in the Antarctic had the greatest reservations about creating an MPA in the Ross Sea. It took a lot of work convince them of the merits of the Ross Sea MPA and to revise the proposal so that it was acceptable to all Parties. Adoption of the MPA this year recognizes the many years of scientific work, diplomatic compromise, and even educational efforts put in by the small army of people who have been advocating for the Ross Sea MPA. This army includes scientists from academia, government scientists and policy makers, NGO scientists and policy advocates, and even the general public.

We scientists played what may seem to you as unlikely roles in this particular MPA process. I include myself here, because I have been involved, at least peripherally, in the Ross Sea MPA since 2010. The Antarctic Treaty (1959) sets Antarctica aside for peaceful purposes and specifically calls for freedom of scientific investigation and cooperation. The Antarctic Treaty therefore establishes scientists as key stakeholders in Antarctic conservation efforts, and not merely conveyors of impartial information to aid the decision making process.

The Ross Sea research community embraced this role of stakeholder, advocating for their study areas, their study organisms, and their very ability to continue doing research in a pristine area in the face of a small fishery seeking to expand. University researchers spoke to their classes, to their departments, and to their funding agencies to raise awareness and earn more funding. Scientists and policy specialists at NGOs, such as The Pew Charitable Trusts, used their organizations resources to fund more research and push public awareness campaigns. Scientists working for the US Government conducted scientific diplomacy. We went to stake holder meetings (so many meetings!) and did our best to represent United States stake holder views to our agencies and internationally to CCAMLR Delegates. NOAA’s Antarctic Ecosystem Research Division invested significant time and effort into developing proposals for the the Ross Sea MPA, even though the majority of their own scientific investigations do not occur in the Ross Sea region. Scientists employed by NOAA and the NSF worked with NZ scientists and conducted outreach to the broader scientific community, to ensure that the best available science was used to develop and improve each iteration of the MPA proposal. And then, with proposal in hand, they conducted diplomatic missions with representatives from the Department of State, to convince CCAMLR Delegations from around the world to support the proposal for a Ross Sea MPA. There were countless meetings that lasted into the wee hours of the morning, many of which did not end with meaningful compromise or progress. Some countries were easy to bring on board. Others needed multiple meetings outside of the CCAMLR setting and changes in larger geopolitics to bring them on board. I would like to think that the little bit of support work I did, including GIS, endless editing of early stage documents, and some talking points I wrote for Secretary of State Kerry aided the process.

A now protected sea ice pressure ridge in the Ross Sea. These areas are important habitat for the Weddell seals, and other species.

The final Ross Sea MPA design reflects the years of hard work and compromise that went into creating it. The amount of area protected is makes it the largest protected, either terrestrial or marine, in the world. A significant portion of the MPA has been designated as no-take, where no fishing is allowed. Other zones have been designated solely for research fishing or have reduced levels of fishing. These are huge accomplishments for conservationists. However, those successes came at a cost. Fishing nations imposed a 35 year “sunset clause” which requires MPA proponents to re-argue for protecting the region in 35 years. Failure to reach consensus to extend the duration of the MPA at that time would end protection. Additionally, some of the areas most important to foraging animals were excluded from the MPA, because they are of great interest to the fishery. In the best compromises everybody sacrifices. Though the final Ross Sea MPA is not what Dr. Ainley and his group of scientists envisioned when they started fourteen years ago, it a tremendous achievement. It cannot be understated how exciting it is that in this day and age of escalating geopolitics, rival Nations came together, made many compromises, and established long-term protection for the Ross Sea.

The success of the Ross Sea MPA proposal bodes well for the establishment of more Antarctic MPAs. I am now tucking into my Ecopath with Ecosim model of the Antarctic Peninsula region with renewed vigor. My model is designed to aid in the MPA designation process for the Antarctic Peninsula region. After six years of limited progress on Antarctic MPAs, it seems that CCAMLR has finally found some momentum and more MPAs will be designated.

It’s the dawn of a new day for Antarctic MPAs. Will the Antarctic Peninsula region be the next place an MPA is established?

Ecosystem Based Fisheries Management in Nigeria

Posted on Updated on

By:  Tunde Adebola
The author (Tunde Adebola) taking water quality readings at the Lagos Lagoon in Nigeria.

I knew what I wanted to do for my PhD studies, and I also knew it would be challenging to pull this off successfully. After speaking with Dr. De Mutsert about my goals, she suggested to collect system-specific data to help with my research work, so I thought, “Sure, why not.”

Since I’m developing an ecosystem fisheries model for Nigerian coastal waters (NCW), it meant I had to travel to Nigeria at some point during my dissertation work, and this would be my first visit to my home country Nigeria since I came to the USA 10 years ago.
I set out early to develop the model for my dissertation since I knew it would takes considerable time and effort to build it from the ground up. It is a first attempt to building a coast-wide ecosystem model for Nigeria. I needed both detailed ecological information and reliable data for the model and also for my entire research.

Initial data used for this process was from internet sources and published literature but this changed when Sharon Bloomquist spoke about departmental research grants for PhD student in the fall of 2015. With Dr. De Mutsert help, I applied for this grant in order that I may go collect environmental data in the Nigerian coastal system and got grant monies in the spring of 2016.

As a developing country, Nigeria has many of the environmental problems associated with her stage of national development. Some important ecological problems include overexploitation of natural resources in some part of the country, desertification in the northern borders with the Sahara Desert, and oil pollution in the Niger Delta a region that has suffered from more than 60 years of oil exploration, exploitation and hydrocarbon pollution.

The growing coastal population has traditionally relied on coastal fisheries and are subjecting coastal resources to ever-increasing fishing effort since many coastal peoples have little or no alternative occupation than to fish. This problem is more critical in the Delta where oil pollution exacerbates an already difficult resource depletion situation, causing environmental damage and pollution estimated to cost $1 billion USD and approximately 30 years of remedial action to reverse.

The Niger Delta is so important that it is estimated that more than 80% of commercial fish stocks in the Gulf of Guinea adjacent to Nigeria’s shores either used this as habitat or transition between the sea and estuaries in their lifecycle migrations. Here and elsewhere along the coast, more than 300,000 small-scale fishermen are operating low technology-fishing vessels in addition to an industrial fishing fleet of approximately 250 trawlers.
Another issue of concern to my study is the nutrient subsidies from coastal areas that have resulted in eutrophication as evident by ubiquitous water hyacinth covering costal lagoons, salt marshes, and creeks along the 853 km coastline that boarders the nation’s shores with the Atlantic Ocean.

My aim in this research, is to investigate these three anthropogenic factors (fishing, eutrophication and oil pollution) in order to see the extent of their impacts on the coastal food web.

I hypothesize that fishing will reduce ecosystem biomass and secondary production in coastal waters and expect eutrophication to increase productivity up to an extent; especially in locations where nonlethal oxygen depletion occurred. The impact of petroleum hydrocarbon pollution will depend on weather conditions, amount of oil spill and the location in which spills have occurred. Impacts will be modeled singly and in combinations using a mass balanced approach in Ecopath with Ecosim fisheries management software.

I aim to provide information for advice about best coastal management practices in Nigeria and in other West African countries along the Gulf of Guinea.

Having a good dataset is an important step towards developing a reliable model to test scientific hypothesis about the impacts of fishing, nutrient enrichment and hydrocarbon pollution in Nigerian coastal food web.

I’m thankful for all who have supported my research from its inception especially my research committee, the Environmental Science and Policy graduate program and members of the Fish ecology lab.

An undergrad’s guide to getting research experience

Posted on Updated on

By:  Sammie Alexander


Photo of me with my College of Science Dean’s Undergraduate Research Award presented at the College of Science Undergraduate Research Colloquium.

The summer sun is out marking a bittersweet end to the busiest semester of my college career.

Let’s recap:

After volunteering in the Fish Ecology Lab for a semester I decided I wanted to begin conducting my own research. I had no clue what I wanted to study, but I knew I liked animals and ecosystems. Equipt with these vague interests and drive for exploration, I was partnered with PhD candidate (now Dr.!) C.J. Schlick to develop a research project branching from her work on river herring. Although it was July when I decided I wanted to conduct research, I had already missed the deadline to apply for the Fall 2015 OSCAR Undergraduate Research Scholars Program and would need to apply for the Spring 2016 cohort.

Tip: Plan ahead. Make note of deadlines as soon as they are available to you. GMU students:  If you are interested in participating in undergraduate research, visit the OSCAR Undergraduate Research Scholars page where all deadlines are posted.

A majority of the Fall 2015 semester was spent preparing my 11 page narrative detailing the who, what, when, where, and why of my research plan. This was the first time I had ever been required to present a plan of this nature and extent, and it was no small feat. Prior to submitting my application, I attended a narrative draft meeting to ask questions and learn tips on how to write an effective narrative. At the beginning of the session, students were asked to share their intended project topic. Students shared questions from neuroscience related topics far beyond my comprehension to the impacts of variations in the political structures of foreign countries’ economies. I slowly felt my chances of getting selected for the program slipping away.

Tip: Comparing fish ecology to the assessment of foreign nations’ war strategies doesn’t work – so don’t compare them.

After quite literally a dozen drafts, I finally submitted my narrative to OSCAR and patiently waited for a response. Applicants were notified in late December, and to my surprise I had been selected. This meant that Spring 2016 would be filled with 18 credits, a weekend job, and a research project. To clarify, this semester was hard, took more than a few pep talks, and required a lot of coffee, BUT it was not impossible.

Tip: Positive thinking does wonders. Visualizing WORKS. You will be more productive following 8 hours of sleep instead of 2.

Spring 2016 consisted of numerous hours dissecting blueback herring (fish), extracting otoliths (earbones), aging fish, and making posters to present at colloquiums, conferences, and symposiums. I enjoyed the lab work I did for my project because, while tedious, I felt a sense of accomplishment at the end of every day. The routine of the lab work also provided me a much needed break from my normal school work. Sometimes it felt like a deadline or presentation was every other day, but I made it through.

Now to reflect on my favorite parts of participating in OSCAR:

-I found a love for dissecting blueback herring and exctracting their otoliths. So cool! Every time I find an otolith I felt like I had found an exciting treasure. You think I’m kidding but it’s thrilling.


-Each day that I worked alongside my mentor, C.J. Schlick, I felt inspired. Her extensive knowledge of the fish we studied never ceased to amaze me. Aside from her knowledge about fish, she continuously encouraged me to extend my reach within the scientific community through attending conferences.

-As a second year undergraduate, conferences did not sound fun. The key word, “networking”, terrified me. Why do I need to talk to strangers? Here’s why: these strangers are awesome. Imagine hosting a party with all of your friends who care about the same things you do while getting to eat food and learn new things about your favorite topic for 2-3 consecutive days. It’s great. Not to mention, there is almost always a raffle – who doesn’t like prizes? Beyond the raffles, there are usually also prizes awarded to people with the best presentations, posters, etc. I can’t explain how surprised I was each time I won an award this past semester. Overall, each conference left me feeling inspired to continue conducting research in order to solve the everyday challenges we face on a changing planet.

Raffle winnings at the American Fisheries Society-Tidewater Chapter.



Presenting a poster at the George Mason Unversity Honors College Spring 2016 Research Exhibition.


Gone Krilling

Posted on Updated on

By: Adrian Dahood

Hello De Mutsert Lab friends and followers!  I have posted a couple of blogs here before. You likely already know that I have the coolest (pun intended) study area in the lab (in my humble opinion).  I work in the Antarctic and I am about to go pay my study area a visit during the Antarctic winter.

My dissertation research involves creating a food web model of the marine ecosystems of the Western Antarctic Peninsula, specifically focusing on a region known as Statistical Area 48.1. Krill play a central role in the marine food web of the region. Therefore, it is rather important that the models adequately capture changes in biomass trends of krill and krill predators.

Figure 1. The study area is outline in blue.  In the inset map, you can see how close it is to South America.

One of the key data sets I am using to build my models is NOAA’s Antarctic Marine Living Resources Division’s (learn more about NOAA AMLR here: https://swfsc.noaa.gov/aerd/)  long-term monitoring data of krill and krill predators in Statistical Area 48.1.  For the past two years NOAA has invited me to join the winter krill cruise and help them collect data to grow these data sets.  I am about to head to sea with them for a third year.

I will be setting sail on the RVIB (Research Vessel Ice Breaker) Nathaniel B. Palmer.  We will depart from Punta Arenas, in far southern Chile and remain at sea for about 27 days before returning to Punta Arenas.

Figure 2. The Nathaniel B. Palmer in port Punta Arenas.

While at sea, we will collect data 24 hours a day, seven days a week. Each person will work a 12 hour shift and then have 12 hours to rest (or in my case work on some writing projects!) During a shift, we will set the krill net four or five times.

Figure 3. Getting ready to set the net.  We use a type of trawling net known as an IKMT that was specifically designed to catch zooplankton.

Once the net is retrieved, we sort and count the catch. In sets where few krill are caught, we can work through a haul in less than 90 minutes. Sets where we catch a lot of krill can take several hours to process. We try to count every single krill and only sub-sample when we catch tens of thousands of organisms.

Figure 4. Sorting the catch and counting krill.

In addition to krill, we typically catch an assortment of amphipods, gastropods, crustaceans and larval fish in the net sets. We count everything by pulling out all of the big critters from the sorting tray, and then filter the sea water to look at the microscopic animals. We spend a lot of time on the microscopes,  sorting, counting critters, and even sexing and staging (determining if they are male or female and how ready they are to reproduce) krill.

Figure 5. Once all the big critters are counted, the fun begins! Yes, that is a disco ball you see in the upper right. Sometimes we need a “one-song dance party” to get through all the sorting!

Thanks to the winter krill cruise, I have developed a new appreciation for zooplankton.   Zooplankton are very important components of the food web. They are a key connection between primary producers (phytoplankton and other algae) and upper level predators, like penguins and seals. Until you see them in person, you can’t really appreciate how gorgeous and fantastically diverse zooplankton are. I love finding “new to me” species.

Figure 6. The amphipod Eusirus properdentatus under the microscope.



Figure 7. Larval ice fish, Chionodraco rastrospinosus.
Figure 8. The pteropod Clione limacine.  Clione was my first zooplankton love!  She is just gorgeous!


This is the fifth and final year of the winter krill survey.  I am quite sad to see it end. Most scientists go to Antarctica during the Antarctic summer, when the weather is generally gentler.  The winter krill cruise has certainly had it challenges (last year we had an ice hurricane that prevented us from working for several days), but is has provided a unique perspective on krill ecology.

I will be blogging from the field for the duration of the winter krill cruise (most of the month of August).  You can read about my adventures in Antarctic research here (http://adrian.fritztech.com).  If you are particularly excited to read about my time in Antarctica, you can flip through my website and read the blogs from my previous trips south.

Mauritius is calling my name

Posted on Updated on

One of the draws to science for many undergraduate and graduate students is the opportunity to travel to far and sometimes obscure places around the globe, in the name of research.  My dissertation research keeps me local to the Chesapeake Bay region, but I have been fortunate enough to travel domestically and internationally to attend and present at conferences, as both a graduate student and also as part of my job.  I haven’t been traveling much as of late due to life happening (all good things!), but I’m excited to hit the road again soon.  I was recently selected to participate in the Embassy Science Fellows Program fellowship with the State Department through work.  Details are starting to fall into place…and it looks like I’ll be heading to Mauritius!

Mauritius is a volcanic island nation off the coast of Southern African in the Indian Ocean, to the east of Madagascar.  It is known for its beautiful turquoise waters and the world’s third largest coral reef which surrounds the island. Perhaps you have heard of Mauritius because it was the only known home of the now extinct Dodo bird!  Or maybe you have heard of the country because it is headed by a female biodiversity scientist, President Dr. Ameenah Gurib-Fakim (their first female President!).  Did you hear me?!  There is a female scientist ruling the country! The bulk of her research focuses on deriving pharmaceuticals from native Mauritian plants:  prior to becoming President, she was a Managing Director of a pharmaceutical research company, as well as a university professor.

Mauritius President, Dr. Ameenah Gurib-Fakim

The island is teaming with rare flora and fauna indigenous and there are breathtaking sandy white beaches and protected lagoons all around the island.  Similar to other nations with borders to the sea, much of the biodiversity and ecological resources of the island are now threatened by human development, coastal erosion, climate change and the introduction of non-native species.  There is particular interest by the government in protecting and conserving these natural treasures, all the while balancing sustainable population and economic growth.  One of the ways the country hopes to accomplish this is by promoting environmental and oceanographic sciences in the public education curriculum.  My main task during this fellowship is to lecture at the University of Maurtitus and advise the various government ministries on increasing the awareness of the importance of biodiversity and conservation at the national scale.

I am looking forward to this once-in-a-lifetime experience!  It is not every day that I get the opportunity to merge my marine science background with policy in an international context such as this one.  I am looking forward to also immersing myself in the culture…and getting the chance to meet with Dr. Gurib Fakim (I heard she is looking forward to meeting me- eek!). Details of my departure are still being worked out, but I will be sure to share photos and updates while on assignment.  Stay tuned until then!

-Treda Grayson, PhD candidate in the Fish Ecology Lab